Nullcone for the Symplectic Group and Related Combinatorics
نویسنده
چکیده
We study the nullcone for the symplectic group with respect to a joint action of the general linear group and the symplectic group. By extracting an algebra over a distributive lattice structure from the coordinate ring of the nullcone, we describe a toric degeneration and standard monomial theory of the nullcone in terms of double tableaux and integral points in a convex polyhedral cone.
منابع مشابه
Polarizations and Nullcone of Representations of Reductive Groups
The paper starts with the following simple observation. Let V be a representation of a reductive group G, and let f1, f2 . . . , fn be homogeneous invariant functions. Then the polarizations of f1, f2 . . . , fn define the nullcone of k ≤ m copies of V if and only if every linear subspace L of the nullcone of V of dimension ≤ m is annhilated by a one-parameter subgroup (shortly a 1-PSG). This m...
متن کاملTheta functions on covers of symplectic groups
We study the automorphic theta representation $Theta_{2n}^{(r)}$ on the $r$-fold cover of the symplectic group $Sp_{2n}$. This representation is obtained from the residues of Eisenstein series on this group. If $r$ is odd, $nle r
متن کاملA New High Order Closed Newton-Cotes Trigonometrically-fitted Formulae for the Numerical Solution of the Schrodinger Equation
In this paper, we investigate the connection between closed Newton-Cotes formulae, trigonometrically-fitted methods, symplectic integrators and efficient integration of the Schr¨odinger equation. The study of multistep symplectic integrators is very poor although in the last decades several one step symplectic integrators have been produced based on symplectic geometry (see the relevant lit...
متن کاملThe Moduli Space of Curves and Its Tautological Ring
The moduli space of curves has proven itself a central object in geometry. The past decade has seen substantial progress in understanding the moduli space of curves, involving ideas, for example, from geometry (algebraic, symplectic, and differential), physics, topology, and combinatorics. Many of the new ideas are related to the tautological ring of the moduli space, a subring of the cohomolog...
متن کاملHamiltonian and Symplectic Symmetries: an Introduction
Classical mechanical systems are modeled by a symplectic manifold (M,ω), and their symmetries are encoded in the action of a Lie group G on M by diffeomorphisms which preserve ω. These actions, which are called symplectic, have been studied in the past forty years, following the works of Atiyah, Delzant, Duistermaat, Guillemin, Heckman, Kostant, Souriau, and Sternberg in the 1970s and 1980s on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009